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Abstract

We propose a model of delegated investment with a public signal that suggests

(i) that contracts do not have to refer to the public signal in order to overcome

incentive problems; (ii) that contracts include references to the public signal not

to address incentive problems, but rather to help agents compete; and, in contrast

to the contracting literature, (iii) that decreasing the precision of the public

signal leads to Pareto improvements. We apply this framework to a problem of

delegated portfolio choice in which contracts make references to credit ratings.

Our model suggests that wider rating categories make everyone better off.
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1 Introduction

Expert delegated asset managers invest on behalf of inexpert clients. They offer con-

tracts to their clients which often make reference to credit ratings.1 But why do they

propose compensation schemes that depend on public information, such as credit rat-

ings, even though clients employ them for their private information? The contracting

literature suggests that contracting on a public signal can mitigate the incentive prob-

lem between a principal and his agent (Nalebuff and Scharfstein (1987), Cremer and

McLean (1988), Riordan and Sappington (1988)). Do references to credit ratings mit-

igate delegated asset managers’ incentive to shift risk?

We propose a model of delegated investment with a public signal that suggests

(i) that contracts do not have to refer to the public signal in order to overcome the

incentive problem; (ii) that contracts include references to the public signal not to

address the incentive problem, but rather to help agents compete; and, in contrast to

the contracting literature, (iii) that decreasing the precision of the public signal leads

to Pareto improvements.

A clear regulatory prescription follows from this last result: broaden ratings cat-

egories, i.e. coarsen the contractible public information partition. Our suggestion is

consistent with regulators’ assertions that institutions should quit responding robot-

ically to ratings. For example, in 2010 the Financial Stability Board told the G20

Finance Ministers that

Investment managers and institutional investors must not mechanistically

rely on CRA ratings for assessing the creditworthiness of assets. This princi-

ple applies across the full range of investment managers and of institutional

investors, including money market funds, pension funds, collective invest-

ment schemes (such as mutual funds and investment companies), insurance

companies and securities firms... [Investment managers should limit] the

proportion of a portfolio that is CRA ratings-reliant.

We build a model with two key frictions: first, agents have private information

and, second, the principal and the agents differ in their attitudes toward risk. The

1According to the Bank for International Settlements (2003), “it is common, for example, for
fixed income investment mandates to restrict the manager’s investment choices to investment grade
credits”; that is to say that they restrict their portfolios to securities rated BBB- or higher by Standard
& Poor’s or Baa3 or higher by Moody’s.
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agents’ private information creates the motive for delegation and the difference in risk

attitudes creates the misalignment of incentives. Both the principal and the agents are

risk averse, but we make no assumption as to who is more risk averse. Further, the

difference between the risk aversion coefficients of the principal and the agent can be

arbitrarily large. However, we require that the utility functions of the principal and the

agents are in the same class of hyperbolic absolute risk-aversion—i.e. that the absolute

risk tolerance of the agent is an affine transformation of the absolute risk tolerance of

the principal.

The timing of the model is as follows: first, identical agents offer contracts compet-

itively. Each agent’s contract can depend on the final wealth, the agent’s action and

the realization of the public signal, but not on the agent’s private information. The

agents offer the contracts before the realization of the public signal and before they

learn their private information. Second, the public signal realizes and the principal

decides which agent to employ to invest on his behalf. Third, the agent learns his

private information and takes an action. The agent’s private information pertains to

the conditional distribution of final wealth given each of his possible actions. Finally

wealth realizes and the principal and agent divide it according to the initial contract.

The first result is that the contract that depends on final wealth alone both solves

the incentive problem and implements efficient risk sharing. The reason is that the

contract that implements efficient risk sharing makes the principal and agent equally

sensitive to the final payoff; since the only incentive problem comes from the difference

in risk aversion, this optimal sharing rule aligns the agent’s incentives with the prin-

cipal’s. Therefore the principal can delegate the decision to the agent knowing that

the agent will act in their joint interest given the contract is the efficient sharing rule.

Put differently, the first-best action is incentive compatible, thus there is no need to

introduce the public signal into the contract. Note that this intuition is robust only if

the principal’s and agent’s preferences belong to the same HARA class.2

The second result is that the equilibrium contract does indeed depend on the public

signal even though it does not mitigate the incentive the problem. To see why this

is the case, suppose an equilibrium in which all agents offer contracts that do not

depend on the public signal and observe that an agent has a profitable deviation.

Because agents are competitive, in any equilibrium in which contracts do not depend

on the public signal, agents must break even in expectation across all realizations of the

2To understand why this intuition is not correct for other preferences, see Pratt (2000).
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public signal. Thus, for realizations of the public signal for which the surplus is high,

the employed agent receives more than his reservation utility. But now a competing

agent can undercut him in this high surplus state by offering a contract contingent on

the public signal. Extending this argument implies that agents must break even not

only in expectation, but also for every realization of the public signal. They achieve

this by writing the public signal into their contracts.

The third main result is that decreasing the precision of the public signal is Pareto

improving. Since, by the last result above, agents receive the same payoff (their reser-

vation utility) for each realization of the public signal, they do not bear any risk over

the realization of the public signal. Therefore, the principal bears all the risk associ-

ated with the public signal. That is to say that the agent’s competition prevents them

from providing insurance to the principal. But, decreasing the precision of the public

signal attenuates the negative welfare effects that result from the failure of insurance.

To see the advantage of a less precise public signal more clearly, consider the extreme

case of a fully uninformative public signal. This is equivalent to the case of contracting

without a public signal. In this case, by the first result above, the optimal contract

implements both efficient risk sharing and solves the incentive problem. Therefore, the

only effect of decreasing the precision of the public signal is to improve the insurance

that the agent provides to the principal: decreasing the precision of the public signal

makes everyone better-off.

Our model provides some useful insight into the role of credit ratings in the dele-

gated asset management industry. One of the most important functions of ratings is

their role in institutional asset management contracts. We apply our framework to a

specific model of delegated portfolio choice, interpreting the public signal as the credit

rating of a risky security. We make the model concrete by considering a two-asset

world with a riskless bond and a risky security. The agent’s private information is his

knowledge of distribution of the risky security return and his action is the allocation

of the principal’s wealth to the risky security. For this part of the paper we restrict

attention to the case in which both the principal and agent have quadratic utility (but

still differ in their aversion to risk). In this setting we can solve not only for the opti-

mal contract but also for the equilibrium action/portfolio weight in closed-form. This

allows us to establish the main results via explicit calculation. In particular, to show

that decreasing the precision of the credit rating improves welfare, we write down the

players’ indirect utilities explicitly and compare them across different ratings parti-
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tions. Our application is more than an illustration of our theoretical analysis. It comes

with a strong policy prescription: broaden ratings categories to improve risk sharing.

Broadening ratings categories allows allows portfolio managers to provide insurance as

well as expertise to their clients.

This example also allows us to demonstrate that at least two predictions of our

model are consistent with stylized facts. First, the equilibrium contract is affine in

wealth, as are most real-wold asset managers’ contracts. Second, the equilibrium con-

tract is higher powered in the event that ratings are good, which we interpret as an

economic boom. The prediction is consistent with empirical evidence on fund flows:

capital flows from money market funds to equity funds—i.e. from funds with low-

powered composition to funds with high-powered compensation—as economic condi-

tions improve.

Our result that improved public information decreases welfare is reminiscent of

Hirshleifer (1971). He argued that more private information could inhibit trading to

share risk in a market setting. For us, simply the ability to contract on information

to be revealed later inhibits risk sharing. Further, in our model the public signal not

only inhibits risk sharing but also is unnecessary to mitigate the incentive problem

between the principal and agent. Several papers have found that public signals are

unambiguously welfare-improving in principal-agent settings with adverse selection,

notably Nalebuff and Scharfstein (1987), Cremer and McLean (1988), Riordan and

Sappington (1988). In these papers the public signal is verifiable ex post. They rely on

large punishments to implement the agent’s truth-telling. Kessler et al. (2005) question

these findings by including limited liability with endogenous punishments; they find

that public information can decrease efficiency in some cases. We alter the set-up in a

different way—in our model players are risk-averse and public information is verifiable

ex interim rather than ex post—and we find that better public information is always

welfare-decreasing. In addition to the literature on contracting in the presence of a

public signal, our paper relates to the literature on socially optimal group decision

making (Amershi and Stoeckenius (1983), Pratt and Zeckhauser (1989), Pratt (2000),

Wilson (1968)). This work typically does not study strategic behaviour. One exception

is Wilson (1984), which studies a social planner who must induce agents to reveal

private information. Our application to asset management falls into the literature on

delegated portfolio choice (Bhattacharya and Pfleiderer (1985), Dybvig et al. (2010),

Palomino and Prat (2003), Stoughton (1993)). None of these papers considers the role
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of public information, but Admati and Pfleiderer (1997) and He and Xiong (2013) do.

Admati and Pfleiderer (1997) studies the role of performance benchmarks in a classical

delegated investment setting and He and Xiong (2013) studies the role of penalties

based on publicly observed market quantities (mainly based on tracking error) when

the agent is a portfolio manager and principal is a fund family. There is also an active

theory literature studying credit rating agencies (Bolton et al. (2012), Bar-Isaac and

Shapiro (2010), Donaldson and Piacentino (2012), Kurlat and Veldkamp (2011), Manso

(2014), Mathis et al. (2009), Skreta and Veldkamp (2009)). Unlike these papers, we

take ratings as exogenous and study the affect of their precision on private contracts.

2 Model

The model constitutes an extensive game of incomplete information in which agents

first compete in contracts in the hope of being employed by a single investor and then

invest his capital on his behalf.

Players

There is a single principal with a unit wealth and von Neumann–Morgenstern utility

uP and at least two competitive agents with von Neumann–Morgenstern utility uA and

outside option ū. The principal and the agents differ in their risk aversion. We make

no assumption as to whether the principal or the agent is more risk averse, but, for the

proof of our main result, we require that both utility functions are in the same class of

hyperbolic absolute risk-aversion. Specifically, their absolute risk tolerances are affine

with the same slope,

−u
′
P(w)

u′′P(w)
= aP + bw (1)

and

−u
′
A(w)

u′′A(w)
= aA + bw (2)

for ai > −bw for all w and for i ∈ {P,A}.3 Note that this assumption imposes no

restriction on the magnitude of the difference between the principal’s and agent’s risk

aversions. When we consider the application to delegated asset management (Section

3For example, when b = 0 conditions (1) and (2) imply that the principal and the agents have
exponential utility with constant coefficients of absolute risk aversion a−1P and a−1A .
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4) we assume that players have quadratic utility; quadratic utility satisfies conditions

(1) and (2) with b = −1.

Agents have private information, captured by their type σ. A public signal ρ conveys

information about σ. In the application to delegated asset management, σ represents

agents’ expert knowledge about the risk of the market securities and ρ represents the

securities’ credit ratings.

Actions and Contracts

The principal wishes to delegate investment to an agent because he is better informed;

however, he anticipates a misalignment of investment incentives since his risk aversion

differs from the agents’.

Contracts attempt to align incentives to mitigate the downside of delegated asset

management. Each agent a offers contract Φa which may depend on the final wealth w,

the public signal ρ, and his action x. The agent chooses x after he has entered contract.

The action choice affects only the distribution of the final wealth w̃(x). We assume that

w̃ is a concave function of x for every state of the world. In our portfolio management

application in Section 4, we interpret x as the proportion of wealth invested in an asset.

Note that the agent’s type σ does not enter the contract because it is not verifiable;

however, ρ may enter the contract as a proxy.

Timing

After agents announce their contracts, the principal observes ρ and employs an agent

who chooses x after learning σ. Then, wealth realizes and players divide it according

to the initial contract. Formally, the timing is as follows:

1. Agents simultaneously offer contracts Φa.

2. σ and ρ realize.

3. The principal observes ρ and the profile of contracts {Φa}a and hires an agent

a∗.

4. Agent a∗ chooses x.

5. Final wealth realizes and it is distributed such that agent a∗ is awarded Φa∗(w)

and the investor keeps w − Φa∗(w).
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Note that key to our timing is that players learn ρ after agents offer contracts but

before the principal employes an agent. In Section 4.2, we demonstrate that our results

are robust to the inclusion of a second public signal that realizes after the agent has

been employed. Nevertheless, the timing is sensitive to the agent’s offering contracts

before they learn σ. Our timing shuts down any signaling incentives.

Note on Notation

We frequently omit the arguments of variables. The contract Φ always depends on

wealth w, the agent’s action x, and the public signal ρ, as well as the offering agent a,

but we frequently write just Φ(w). The agent chooses the action given his type σ, but

we usually write just x for x(σ). Later we will introduce a social planner’s problem,

in which the welfare function places weight µρ on the agent given the realization ρ of

the public signal. We sometimes suppress this dependence and write µ for µρ. Finally,

the social planner’s sharing rule ϕ depends on final wealth directly and on the public

signal indirectly via the welfare weight. While we sometimes write formally ϕµρ(w),

we frequently abbreviate to ϕµ(w) or even just ϕ(w).

3 Results

Competition Is Rating-by-Rating

We first show that agents must break even for every realization of the public signal.

This will allow us to transform our game into a family of principal-agent problems, one

for each realization of the public signal. That is to say that for every realization of the

public signal the agent must offer the contract that maximizes the principal’s utility

and assures him at least his reservation payoff.

Lemma 3.1. The employed agent a∗ breaks even for each realization ρ of the public

signal, or

E
[
uA

(
Φa∗
(
w̃
)) ∣∣∣ ρ̃ = ρ

]
= ū

for all ρ.

Proof. The proof is in Appendix A.1.1.

That agents receive their reservation utility in equilibrium is unsurprising because

they are competitive. The takeaway from Lemma 3.1 above is that agents receive
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their reservation utility for every realization of the public signal. There cannot be an

equilibrium in which agents break even in expectation over all possible realizations

(unless they break even for every realization). In fact, if that is the case, then an agent

who receives less than his reservation utility for some realization of the public signal

must receive in excess of his reservation utility for another realization. But since the

agent is getting strictly in excess of his reservation utility for this realization, another

agent can undercut him by offering a contract that grants him more than his reservation

utility and allocates more of the surplus to the principal.

The proof is by contraction. It is standard except for one subtlety. We first suppose

that an agent receives strictly in excess of his reservation utility for some realization

of the signal. This agent must therefore be employed given this realization. But

then another agent, otherwise unemployed and receiving his reservation utility, would

undercut the employed agent for this realization of the signal. Therefore, à la Bertrand

competition, the agents must break-even given this realization. The only subtlety of

the proof is that agents’ contracts affect their incentives and hence their actions. Thus,

when a deviant agent offers the principal a contract, the principal must take the effect

of this contract on the agent’s action into account. Our proof circumvents this issue by

constructing a deviation that preserves the incentives of the originally employed agent

while allocating more surplus to the principal. Specifically, if the supposed equilibrium

contract is Φ the deviation Φε(w) := u−1A

(
uA(Φ(w)−ε)

)
preserves the employed agent’s

incentives.

The argument in the proof of Lemma 3.1 also implies that the contract must max-

imize the principal’s utility for every realization of the signal ρ as is summarized in

Corollary 3.1 below. The reason is that if the employed agent does not maximize the

principal’s utility, then another agent can deviate to a contract more favorable to the

principal that also leaves him a small surplus above ū.

Corollary 3.1. If Φa∗ is the contract of the employed agent a∗ given rating ρ̂ and there

is another contract Φ̂ such that

E
[
uP

(
w̃ − Φ̂

(
w̃
)) ∣∣ ρ̃ = ρ̂

]
> E

[
uP

(
w̃ − Φa∗

(
w̃
)) ∣∣ ρ̃ = ρ̂

]
,

then it must be that

E
[
uA

(
Φ̂
(
w̃
)) ∣∣ ρ̃ = ρ̂

]
< ū.
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Principal-Agent Formulation

Lemma 3.1 and Corollary 3.1 taken together say that the principal chooses the contract

that maximizes his expected utility subject to the constraint that the agent receives

his reservation utility for every realization of the signal ρ. That is to say that the

equilibrium contract solves the principal-agent problem for every ρ. The twist on a

standard principal-agent problem is that the agent’s participation constraint depends

on the public signal.

Proposition 3.1. For each realization ρ of the public signal, the contract of the em-

ployed agent a∗(ρ) solves the following principal-agent problem:

Maximize E
[
uP

(
w̃(x)− Φ

(
w̃(x), x, ρ

)) ∣∣ ρ̃ = ρ
]

subject to E
[
uA

(
Φ
(
w̃(x), x, ρ

)) ∣∣ ρ̃ = ρ
]

= ū and

x ∈ arg max
{
E
[
uA
(
Φ
(
w̃(ξ), ξ, ρ

) ∣∣ σ̃ = σ
]

; ξ ∈ R
}

(3)

over contracts Φ.

Equilibrium Contract as the Solution of a Social Planner’s Problem

For each realization of the public signal ρ, we transform the principal-agent problem

into a social planner’s problem. The social planner will maximize social welfare subject

to the agent’s incentive compatibility constraint. Call the agent’s welfare weight µρ

for a given ρ. This will coincide with the Lagrange multiplier on the agent’s partici-

pation constraint in the principal-agent problem for a given ρ. This approach allows

us eliminate the agent’s participation constraints temporarily to focus on incentive

compatibility.

Now use the method of Lagrange multipliers to eliminate the participation con-

straint and say that the problem is to maximize

E

[
uP

(
w̃(x)− Φ

(
w̃(x), x, ρ

))
+ µρ

[
uA

(
Φ
(
w̃(x), x, ρ

)
− ū
] ∣∣∣∣∣ ρ̃ = ρ

]

subject to

x ∈ arg max
{
E
[
uA

(
Φ
(
w̃(ξ), ξ, ρ

) ∣∣∣ σ̃ = σ
]

; ξ ∈ R
}
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over contract Φ.

For any Lagrange multiplier µρ the problem is equivalent to the social planner’s

problem with welfare weight µρ associated with the agent. That is to say that, for

given µρ, we can omit the agent’s outside option ū and solve the following social

planner’s problem for Φ and x.
Maximize E

[
uP

(
w̃(x)− Φ

(
w̃(x), x, ρ

))
+ µρuA

(
Φ
(
w̃(x), x, ρ

) ∣∣∣∣∣ ρ̃ = ρ

]

subject to x ∈ arg max
{
E
[
uA

(
Φ
(
w̃(ξ), ξ, ρ

) ∣∣∣ σ̃ = σ
]

; ξ ∈ R
}
.

(4)

Below we solve the problem for a generic Lagrange multiplier and only later we use

the agent’s binding participation constraint to solve for µρ for each ρ. Transforming

the game into a social planner’s problem reveals that the task is to trade off efficient

risk sharing with implementing efficient investment.

The Efficient Sharing Rule Implements Efficient Investment

We now find the contract that solves the social planner’s problem. We do this by

characterizing the first-best contract and action—i.e. those that the social planner

would choose if he had perfect information. We then show that given the first-best

contract the first-best action is incentive compatible, so the solution to the social

planner’s problem coincides with the first-best outcome. Thus, in fact, there is no

tension between risk sharing and efficient investment in equilibrium.

Proposition 3.2. If the contract is the efficient sharing rule, then the incentive com-

patible action is the social optimum.

Namely, if ϕ maximizes

uP(w − ϕ) + µρuA(ϕ)

then

x ∈ arg max
{
E
[
uA

(
ϕ
(
w̃(ξ)

)) ∣∣∣ σ̃ = σ
]}

implies

x ∈ arg max
{
E
[
uP

(
w̃(ξ)− ϕ

(
w̃(ξ)

))
+ µρuA

(
ϕ
(
w̃(ξ)

)) ∣∣∣ σ̃ = σ
]}

.

11



Proof. The proof is in Appendix A.1.2.

The main takeaway of Proposition 3.2 is that for any ρ the efficient contract imple-

ments the efficient action.

In the proof we first find the efficient ϕ. We then demonstrate that, given this ϕ,

the agent would choose the social optimum. That is to say that the action that the

agent chooses coincides with the action a social planner would choose if he had the

agent’s private information.

To understand the connection between incentive alignment and risk sharing, recall

that a sharing rule ϕ is efficient if it maximizes uP(w−ϕ)+µρuA(ϕ) for each realization

of w or

u′P(w − ϕ(w)) = µρu
′
A(ϕ(w)). (5)

On the other hand, the sharing rule ϕ aligns the incentives of the principal and the

agent globally if one’s utility function is affine transformation of the other’s given the

sharing rule ϕ, or

uP(w − ϕ(w)) = αuA(ϕ(w)) + β

for some α > 0 and β ∈ R. Differentiating this condition with respect to w gives

u′P(w − ϕ(w)) =
αϕ′(w)

1− ϕ′(w)
u′A(ϕ(w)).

This last condition coincides with the condition above of efficient risk sharing (condition

(5)) exactly when µρ =
αϕ′(w)

1− ϕ′(w)
, which is possible if and only if ϕ′ is a constant or ϕ

is affine. The only remaining step in the argument is to show that the efficient sharing

rule is affine for the preferences we consider, which we show in Lemma A.1 in Appendix

A.1.2.

Coarser Public Signals Are Pareto-Improving

Proposition 3.2 shows that the optimal contract eliminates the incentive problem for

every σ and the risk sharing problem for every ρ. The problem remains to share risk

over realizations of the public signal. The next result states that less precise public

signals Pareto dominate more precise public signals. The reason is that the public

signal does not mitigate the incentive problem but only hinders risk sharing.

From now on, since the optimal contract solves the incentive problem, we omit
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incentive constraints and focus directly on the social planner’s problem (with complete

information) as per Proposition 3.2.

Proposition 3.3. Coarser public signals Pareto-dominate finer ones: for any signal ρ̃c

and ρ̃f such that σ(ρ̃c) ⊂ σ(ρ̃f ), the ex ante equilibrium utility of all players is weakly

higher given ρ̃c than ρ̃f .

Proof. Below we omit the dependence of ϕ on x because by Proposition 3.2 the efficient

x is chosen for every σ independently of ρ. Below call ϕµρf and ϕµρc the efficient sharing

rules associated with fine and coarse public signals respectively.

First, the agent’s participation constraint given ρ̃f is

E
[
uA

(
ϕµρf (w̃)

) ∣∣∣ ρ̃f] = ū.

Now, since σ(ρ̃c) ⊂ σ(ρ̃f ), use the law of iterated expectations and the condition above

to observe that

E
[
uA

(
ϕµρf (w̃)

) ∣∣∣ ρ̃c] = E
[
E
[
uA

(
ϕµρf (w̃)

) ∣∣∣ ρ̃f] ∣∣∣ ρ̃c] = E
[
ū
∣∣∣ ρ̃c] = ū.

This says that ϕµρf satisfies the participation constraint given ρc. Since ϕµρc solves the

principal-agent problem given ρc—viz. it maximizes the principal’s utility given the

agent’s participation constraint—

E
[
uP

(
w̃ − ϕµρc (w̃)

) ∣∣∣ ρ̃c] ≥ E
[
uP

(
w̃ − ϕµρf (w̃)

) ∣∣∣ ρ̃c] .
Now we use the inequality above and we apply the law of iterated expectations again

to prove that the principal is better off given the coarser ratings, namely

E
[
uP

(
w̃ − ϕµρc (w̃)

)]
= E

[
E
[
uP

(
w̃ − ϕµρc (w̃)

) ∣∣∣ ρ̃c]]
≥ E

[
E
[
uP

(
w̃ − ϕµρf (w̃)

) ∣∣∣ ρ̃c]] = E
[
uP

(
w̃ − ϕµρf (w̃)

)]
.

Since agents always break-even and the principal is better off with coarser public signals

ρ̃c Pareto dominates ρ̃f .

The main step of the proof is to show that a contract that is feasible given a fine

signal structure is also feasible given a coarse signal structure. This follows directly

from the law of iterated expectations. Since coarsening the signal structure expands
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the set of feasible contracts, it can only increase the principal’s objective (recall that

the incentive constraints are not binding by Proposition 3.2). Since the agent always

breaks even, increasing the principal’s profits constitutes a Pareto improvement.

The intuition behind this result comes from Lemma 3.1. Because competition

makes agents break even state-by-state, there is one participation constraint for each

realization of the public signal. Thus, with a finer signal structure there are more

realizations of the public signal and, thus, more constraints on the principal’s objective.

Because we know from Proposition 3.2 that the efficient action is always taken, these

constraints restrict only risk sharing between the principal and the agent. A finer signal

structure shuts down risk sharing and reduces welfare.

4 An Example: Portfolio Choice with Quadratic

Utility

Setup

To fix ideas we consider the specific case of portfolio choice with quadratic utility. This

example allows us to solve the model explicitly and thus it exposes the forces behind

the more general proofs above.

The portfolio choice model has a risk-free bond with gross return Rf and a risky

asset with random gross return R̃ . The agent’s type σ will be the standard deviation

of R̃ and ρ will be an imperfect public signal about this risk parameter. Call ρ the

credit rating of the risky security. The agent’s action x represents the proportion of

wealth invested in the risky security; therefore,

w̃(x) = Rf + x
(
R̃−Rf

)
.

We assume that all players have quadratic utility,

ui(w) = −1

2

(
ai − w

)2
for i ∈ {A,P}. The investor differs from the agents in his risk aversion. Note that the

coefficient of absolute risk tolerance is ai−w, so these utility functions are in the same

class of hyperbolic absolute risk aversion as defined in equations (1) and (2).

We make some restrictions on the distribution of R̃ to simplify the belief updating.
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We assume that the mean return R̄ of the risky asset is known and independent of the

agent’s type σ. In fact, since with quadratic utility players’ expected utility depends

on only the mean and variance of the distribution, all relevant asymmetric information

is about the variance σ2. Note that this assumption implies that the credit rating is

informative only about the asset’s risk and not about its expected return,

E
[
R̃
∣∣ ρ̃ = ρ

]
= E

[
R̃
]
.

With quadratic utility, players’ marginal utility is decreasing when their wealth

is large. We restrict parameters to ensure that players’ wealth is not so large. In

particular, it must be that the wealth of the principal and that of the agent are not

too large, or, respectively,

w − Φ(w) < aP

and

Φ(w) < aA.

A sufficient condition for this is

supp w̃ ⊂ [0, aP + aA). (6)

To guarantee this, make the technical assumption that(
R̄−Rf

)(
R− R̄

)
≤ σ2 (7)

for all pairs (σ,R).4

4.1 Results

Competition Is Rating-by-Rating

Lemma 3.1 implies that agents must break even for each realization of the credit rating.

Recall that the reason is that competition in contracts is Bertrand-like in the sense that

the employed agent will receive his reservation utility conditional on any realization of

4Condition (7), sufficient for condition (6), comes from solving the game assuming that the agent’s
participation constraint binds, then writing a sufficient condition for it to bind in light of the equilib-
rium.
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the credit rating ρ̃; further agents act so as to maximize the investor’s expected utility

conditional on every ρ subject to their participation constraints.

The proof of Lemma 3.1 is in Appendix A.1.1, but re-iterating the main argument

with these specific utility functions can clarify the proof. Recall that the proof is by

contradiction. Supposing an equilibrium in which an agent receives in excess of his

reservation utility for some realization of the public signal, a deviating agent can un-

dercut him. However, we must be careful to take into account the effect of the new

contract on the agent’s incentives. We construct a deviation that does not distort in-

centives. With the current utility specification we can write it explicitly. In particular,

if the initial contract given a rating ρ̂ is Φ̂, the contract for ε > 0 is

Φ̂ε(w) := u−1A

(
uA

(
Φ̂
(
w̃
)
− ε
))

= aA −
√(

aA − Φ̂(w)
)2 − 2ε

gives the agent identical incentives to Φ and allocates more surplus to the principal.

Principal-Agent Formulation and Social Planner’s Problem

Lemma 3.1 asserts that agents compete rating-by-rating, maximizing investor welfare

subject to their participation constraints, that is to say that, for every realization ρ of

the credit rating, the contract of the employed agent and the corresponding portfolio

weight solve the principal-agent problem of Proposition 3.1. Using the method of

Lagrange multipliers we can transform the principal-agent problem into the social

planner’s problem summarized by the system (4). Now, unlike in the general case,

we can compute simple expressions not only for the optimal contract but also for the

agent’s action x and the Lagrange multiplier/welfare weight µρ.

The Efficient Sharing Rule Implements Efficient Investment

First, find the optimal sharing rule using the first-order condition in equation (5),

u′P
(
w − ϕµ(w)

)
= µu′A

(
ϕµ(w)

)
,

or, for quadratic utility,

w − ϕµ(w)− aP = µ
(
ϕµ(w)− aA

)
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for all w. Thus the efficient sharing rule is

ϕµ(w) = aA +
w − aP − aA

1 + µ
. (8)

Observe that the standard deviation σ does not enter the expression, and thus that

the social planner need not know the true variance to implement optimal risk sharing.

Given the optimal sharing rule, we now calculate the first-best investment in the

risky security x∗ in the sense that x∗ is the investment that the social planner would

make if he knew the standard deviation σ. The first-best will be useful in finding the

solution to the second-best problem in which the social planner knows only ρ and the

agent chooses x. This x in turn constitutes the equilibrium allocation of the model.

The reason that it is useful to compute the first-best outcome is that we proceed to

show that it is an attainable outcome of the second-best problem. Thus we solve the

game by showing that the social optimum is attainable.

The social planner finds x∗ by computing the maximum of

E

[
uP

(
Rf + x

(
R̃−Rf

)
− ϕµ

(
Rf + x

(
R̃−Rf

))) ∣∣∣∣∣ σ̃ = σ

]

+ µE

[
uA

(
ϕµ

(
Rf + x

(
R̃−Rf

))) ∣∣∣∣∣ σ̃ = σ

]
,

(9)

over all x. Mechanical computations collected in Appendix A.2.1 reveal that the opti-

mal investment is

x∗(σ) =

(
R̄−Rf

)(
aP + aA −Rf

)
σ2 +

(
R̄−Rf

)2 . (10)

Note that the optimal investment does not depend on the welfare weight µ, thus the

social planner chooses the same x∗ for all µ, even as µ → ∞. But, now, in the limit

as µ → ∞, since in this case the social planner puts all the weight on the agent, his

objective coincides with the agent’s. Put differently, if the contract is the efficient

sharing rule, the agent always takes the socially optimal action. This observation

implies Proposition 3.2 in the context of this example.
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The Break-even Welfare Weight and Ex Ante Utility

Now we can characterize the employed agent’s contract explicitly by finding the La-

grange multiplier µρ for each ρ. For a given contract ϕµρ the agent must break even,

so we can determine µρ directly from the agent’s participation constraint:

E

[
uA

(
ϕµρ

(
Rf + x(σ̃)

(
R̃−Rf

))) ∣∣∣∣∣ ρ̃ = ρ

]
= ū. (11)

This equation combined with the closed-form expressions for ϕµρ and x∗(σ) above allow

us to compute µρ in closed-form. A string of calculations employing the law of iterated

expectations (cf. Appendix A.2.2), says

(
1 + µρ

)2
=

(
aP + aA −Rf

)2
2 |ū|

E

[
σ̃2

σ̃2 +
(
R̄−Rf

)2
∣∣∣∣∣ ρ̃ = ρ

]
. (12)

This formula will be useful to express the ex ante utility of the principal and then to

see constructively how changing the coarseness of the ratings partition affects investor

welfare. In particular, within the framework of the example, we will be able to provide

a less abstract proof of Proposition 3.3.

Before we proceed to the welfare analysis, we highlight one insight that the expres-

sion for the Lagrange multiplier offers. The mapping

σ̃2 7→ σ̃2

σ̃2 +
(
R̃−Rf

)2
under the expectation operator in equation (11) is concave, so that if the distribution

of σ̃2 spreads out (for example in the sense of second-order stochastic dominance),

then µρ decreases, suggesting that the more distribution risk the agent faces, the less

the investor must compensate him despite his risk aversion, as captured by the social

planner’s lower welfare weight. This observation presents a puzzle: why would the

agent, who is risk-averse, prefer a riskier distribution? The puzzle finds its resolution

in the observation that higher dispersion of the variance comes with option value, and

thus convexity, making him risk-loving over this kind of risk. The reason is that his

investment decision comes after the realization of the variance, and thus the riskier

decisions come with option value allowing him to adjust his investment decision to
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market conditions: when σ2 is very low he will invest a lot in the risky asset, while

when it is high he will invest relatively more in the riskless bond.

Now return to the main analysis. To analyze welfare we use the equilibrium welfare

weight to find a formula for the investor’s equilibrium expected utility given the rating

ρ,

E
[
uP

(
w̃(x)− ϕ

(
w̃(x)

)) ∣∣∣ ρ̃ = ρ
]

= ū µ2
ρ (13)

(see Appendix A.2.3 for the short calculation). Thus his ex ante expected utility

E
[
uP

(
w̃(x)− ϕ

(
w̃(x)

))]
= ūE

[
µ2
ρ̃

]
. (14)

Coarser Credit Ratings Are Pareto-Improving

Since competition means that agents always receive their reservation utilities, the main

result that coarsening credit ratings makes everyone better-off follows from comparing

the ex ante expected utility of the investor across ratings systems. To do this we use

formula (14) above combined with the connection between convex functions, second-

order stochastic dominance, and the law of iterated expectations.

Within the setting of the example, we can now provide a constructive proof for

Proposition 3.3 above, which says that coarse credit ratings Pareto dominate finer

ones.

Our proof has two main steps. We summarize these steps briefly before giving the

full proof. The first step is to show that the investor’s ex ante expected utility is minus

the expectation of a convex function,

ūE
[
µ2
ρ̃

]
= −cE

[
f
(
E [Y | ρ̃ ]

)]
for (appropriately defined) c > 0, f ′′ > 0 and a random variable Y . The second step is

to show that the expectation conditional on coarse ratings second-order stochastically

dominates the expectation conditional on fine ratings,

E [Y | ρ̃c]
SOSD
� E [Y | ρ̃f ].

Whence utility is greater under coarse ratings because minus a convex function is a

concave function, and, à la risk aversion, the expectation of a concave function of

a stochastically dominated random variable is greater than the expectation of the
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function of the dominated variable.

Step 1: Rewrite the investor’s ex ante expected utility:

ūE
[
µ2
ρ̃

]
= ūE

(√(aP + aA −Rf )2

2|ū|
E
[

σ̃2

σ̃2 + (R̄−Rf )2

∣∣∣∣ ρ̃ ]− 1

)2


=
ū(aP + aA −Rf )

2√
2|ū|

E

[√E
[

σ̃2

σ̃2 + (R̄−Rf )2

∣∣∣∣ ρ̃ ]− 1

]2 
= −cE

[
f
(
E [Y |ρ̃]

)]
where

c :=
√
|ū|/2 (aP + aA −Rf )

2,

f(z) :=
(√

z − 1
)2
,

and

Y :=
σ̃2

σ̃2 +
(
R̄−Rf

)2 .
Note that c > 0 and f ′′(z) = z3/2/2 > 0.

Step 2: By definition,

E [Y | ρ̃c]
SOSD
� E [Y | ρ̃f ]

if there exists a random variable ε̃ such that

E [Y | ρ̃f ] = E [Y | ρ̃c] + ε̃

and

E
[
ε̃
∣∣E [Y | ρ̃c]

]
= 0.

For ε̃ = E [Y | ρ̃f ]− E [Y | ρ̃c] from the above, the condition is

E
[
E [Y | ρ̃f ]− E [Y | ρ̃c]

∣∣∣E [Y | ρ̃c]
]

= 0

or

E
[
E [Y | ρ̃f ]

∣∣∣E [Y | ρ̃c]
]

= E [Y | ρ̃c].
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Given the assumption σ(ρ̃c) ⊂ σ(ρ̃f ) and since conditioning destroys information—

σ
(
E [Y | ρ̃c]

)
⊂ σ(ρ̃c)—apply the law of iterated expectations firstly to add and then

to delete conditioning information to calculate that

E
[
E [Y | ρ̃f ]

∣∣∣E [Y | ρ̃c]
]

= E

[
E
[
E [Y | ρ̃f ]

∣∣∣ ρ̃c]
∣∣∣∣∣E [Y | ρ̃c]

]
= E

[
E [Y | ρ̃c]

∣∣∣E [Y | ρ̃c]
]

= E
[
Y
∣∣ ρ̃c] ,

as desired.

Asset Manager’s Observed Contracts

The agent’s equilibrium contract is

ϕµρ(w) = aA +
w − aP − aA

1 + µρ
(15)

where µρ is defined in equation (12).

The compensation contract is affine in wealth, as are typical asset management

contracts. For the next result (and the next result only), consider a simplified but

realistic credit rating rule. Let ρ̃ define a partition of the realization of the variance

σ2
0 < σ2

1 < · · · , namely

P{σ̃2 ∈ [σ2
i , σ

2
i+1) | ρi} = 1.

Proposition 4.1. For i < j, µρi < µρj . Increases in the expected variance decrease

the power of the contract, i.e. the slope in the wealth.

Proof. Since
σ2

σ2 +
(
R̄−Rf

)2
is increasing in σ2,

E

[
σ̃2

σ̃2 +
(
R̄−Rf

)2
∣∣∣∣∣ ρi
]
<

σ2
i+1

σ2
i+1 +

(
R̄−Rf

)2 < E

[
σ̃2

σ̃2 +
(
R̄−Rf

)2
∣∣∣∣∣ ρi+1

]
.

This follows from definition (4.1), which implies that σi+1 is greater than the expecta-
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tion of σ̃ conditional on ρi but less than the expect ion of σ̃ conditional on ρi+1. Now,

immediately from equation (12), µρi < µρi+1
and by induction µρi < µρj whenever

i < j. Combined with equation (15), the result implies that lower expected variances

correspond to steeper wealth compensation for agents.

In the model, ratings describe the variance of the market portfolio. Define a “boom”

a realization of ρ̃ implying low expected variance. With this interpretation, proposi-

tion 4.1 says that employed agents have higher powered contracts in booms than in

busts. Since, almost uniformly, equity funds offer higher powered contracts than money

market funds, the model predicts that the in-flows to equity funds relative to money

market funds will be procyclical. Using a sample of US mutual fund data from 1991 to

2008, Chalmers et al. (2010) finds that investors direct funds away from money market

funds towards equity funds when aggregate economic conditions improve, in line with

our prediction.

4.2 Extensions

Imperfect Private Information

Suppose that the agent receives an imperfect signal about the variance. Namely, he

observes the realization of a random variable s̃ that is not independent of σ̃. Then,

equation (10) for the portfolio allocation becomes

x(ρ, s) =

(
R̄−Rf

)(
aP + aA −Rf

)
Var
[
R̃ | ρ, s

]
+
(
R̄−Rf

)2 .
The optimal contract is ϕµ(Rf +x(ρ, s)(R−Rf )) (where an equation analogue to (12)

determines µ).

Clearly, whenever σ(ρ̃) ⊂ σ(s̃), then x(ρ, s) does not depend on ρ and our main

result remains unchanged. If, instead, σ(ρ̃) 6⊂ σ(s̃) then a trade-off arises: finer credit

ratings still shut down risk sharing, but they increase allocational efficiency, i.e. the

portfolio weight is closer to first best. The net welfare effect is then ambiguous.

Our model and policy prescriptions therefore apply to markets in which delegated

portfolio managers are better informed than credit rating agencies.
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Additional Ratings’ Changes

In our model, ratings realize once, after agents offer contracts but before the investor

employs an agent. In reality, ratings upgrades and downgrades are frequent and in-

vestors and agents have long-term relationships. In the model, if ratings change after

the investor has employed an agent, the optimal contract above still induces the agent

to invest efficiently. The new rating influences the portfolio allocation only insofar as

it improves the agent’s information (cf. the preceding discussion of imperfect signals).

Ratings changes after the investor and agent commit to a relationship never decrease

efficiency and can be beneficial if they improve information. Our model therefore

suggests that investment mandates matter only because funds are looking to attract

new investors or because their current investors may withdraw their funds. The idea

finds support in the observation that hedge funds, who raise money infrequently via

long-term contracts do not use investment mandates.

5 Conclusion

Motivated by delegated asset managers’ frequent references to credit ratings in the

contracts they offer their clients, we study a delegation problem with adverse selection

in the presence of a public signal. We characterize the optimal contract between a

risk-averse principal and a risk-averse agent and show that while it does indeed depend

on the public signal, contracting on the public signal does not mitigate the incentive

problem. In fact, in contrast to previous literature, we find that decreasing the precision

of the public signal is Pareto improving. The reason is that contracting on final wealth

implements efficient investment, so contracting on the public signal serves only to

inhibit risk sharing. Agents include the public signal in their contracts only to help

them compete.

We apply the model to a classical delegated portfolio management setting in which

delegated asset managers’ make a portfolio choice decision on behalf of their clients.

In this setting, we interpret the public signal as a credit rating. Our main policy pre-

scription is that credit rating agencies should provide information in forms prohibitive

to their inclusion in rigid contracts. This helps asset managers to provide insurance to

their clients in addition to expertise. Our recommendation is consistent with the pop-

ular suggestion that markets should eliminate the mechanistic reliance on ratings. Our

model also suggests investment mandates may contribute to the cyclicality of mutual
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fund flows, providing further motivation for their abolition.
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A Appendices

A.1 General Case

A.1.1 Proof of Lemma 3.1

Suppose, in anticipation of a contradiction, an equilibrium in which the employed agent

offers contract Φ̂ given signal ρ̂ and receives strictly in excess of his reservation utility,

E
[
uA

(
Φ̂
(
w̃
)) ∣∣∣ ρ̃ = ρ̂

]
> ū. (16)

We now show that another agent Â has a profitable deviation. In order for a contract

Φ̂ε to be a profitable deviation for Â it must (i) make the principal employ him given

ρ̂ and (ii) give him expected utility greater than his reservation utility ū given ρ̂. The

subtlety in this proof is that Â’s contract determines not only the allocation of surplus,

but also his action x. To circumvent the effect of changing actions on payoffs, we

construct Φ̂ε to induce the agent to choose the same action that he would have chosen

under Φ̂, but still to change the division of surplus. To summarize, Φ̂ε is a profitable

deviation if given ρ̂ (i) it gives the principal higher utility than does Φ̂,

E
[
uP

(
w̃ − Φ̂ε

(
w̃
)) ∣∣ ρ̃ = ρ̂

]
> E

[
uP

(
w̃ − Φ̂

(
w̃
)) ∣∣ ρ̃ = ρ̂

]
,

(ii) it gives the agent utility in excess of ū,

E
[
uA

(
Φ̂ε

(
w̃
)) ∣∣∣ ρ̃ = ρ̂

]
> ū,

and (iii) the set of incentive compatible actions under Φ̂ and Φ̂ε coincide,

arg max
x

{
E
[
uA

(
Φ̂ε

(
w̃
)) ∣∣∣ σ̃ = σ

]}
= arg max

x

{
E
[
uA

(
Φ̂
(
w̃
)) ∣∣∣ σ̃ = σ

]}
.

One example of contract that satisfies these three conditions is

Φ̂ε(w̃) := u−1A

(
uA

(
Φ̂
(
w̃
)
− ε
))

(17)

given ρ̂, so that

uA
(

Φ̂ε

)
= uA

(
Φ̂
)
− ε. (18)
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Since u′P > 0, a sufficient condition for Φ̂ε to satisfy condition (i) is that

w̃ − Φ̂ε

(
w̃
)
> w̃ − Φ̂

(
w̃
)
,

or, substituting from equation (17),

Φ̂
(
w̃
)
> u−1A

(
uA

(
Φ̂
(
w̃
)
− ε
))
,

which is satisfied for ε > 0 by the inverse function theorem since u′A > 0.

Condition (ii) holds for ε > 0 and sufficiently small. This follows from equation

(18) and inequality (16) with the continuity of uA.

Finally, condition (iii) is immediate from equation (18) since affine transformations

of utility do not affect choices.

Thus the investor will employ agent Â who will receive, given ρ̂, utility greater than

the utility that he would have received in the supposed equilibrium (in the supposed

equilibrium he was unemployed and he was obtaining ū). Thus Φ̂ε is a profitable

deviation for Â and Φ cannot be the contract of an agent employed at equilibrium

given ρ̂.

We have shown that the agent’s expected utility given any ρ cannot exceed ū. To

conclude the proof, note that his utility can never be strictly less than ū because then

his expected utility would be less than his reservation utility.

A.1.2 Proof of Proposition 3.2

The proof relies on the following lemma.

Lemma A.1. The efficient sharing rule ϕ is affine in wealth w.

Proof. Assumptions (1) and (2) imply that

uP(w) =
1

b− 1

(w
b

+
aP
b2

) b−1
b

and

uA(w) =
1

b− 1

(w
b

+
aA
b2

) b−1
b
.

The contract that implements efficient risk sharing is that which maximizes social

surplus (for appropriate welfare weight µ) for every realization of wealth. Now compute
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the efficient sharing rule directly via the first the first order approach:

∂

∂ϕ

(
uP(w − ϕ) + µρuA(ϕ)

)
= 0

so (w − ϕ
b

+
aP
b2

)− 1
b

= µρ

(ϕ
b

+
aA
b2

)− 1
b
.

This implies

ϕ(w) =
aP − µ−bρ aA + bw

b
(
1 + µ−bρ

) ,

which is affine in w.

We begin the proof of Proposition 3.2 with the agent’s incentive problem given the

contract ϕ and show through a series of manipulations that his incentives are aligned

with those of the social planner. We rely on the fact that u′P(w − ϕ) = µρu
′
A(ϕ), from

the definition of efficient risk sharing.

Incentive compatibility implies the first-order condition

∂

∂x
E
[
uA

(
ϕ
(
w̃(x)

)) ∣∣∣ σ̃ = σ
]

= 0

or

E
[
u′A

(
ϕ
(
w̃(x)

))
ϕ′
(
w̃(x)

)
w̃′(x)

∣∣∣ σ̃ = σ
]

= 0.

By lemma A.1 ϕ′ is a constant, thus we can pass it under the expectation operator.

Further, since the right-hand side above is zero, we can remove ϕ′ from the equation

entirely to get

E
[
u′A

(
ϕ
(
w̃(x)

))
w̃′(x)

∣∣∣ σ̃ = σ
]

= 0.

And, since u′P(w − ϕ)− µρu′A(ϕ) = 0, the equation above re-writes as

E
[
u′P

(
w̃(x)− ϕ

(
w̃(x)

))
w̃′(x)

∣∣∣ σ̃ = σ
]

= 0. (19)

Now, in order to back out the social planner’s objective from (19) observe that it

suffices to subtract

E
[
ϕ′
(
w̃(x)

)
w̃′(x)

[
u′P

(
w̃(x)− ϕ

(
w̃(x)

))
− µρu′A

(
ϕ
(
w̃(x)

))] ∣∣∣ σ̃ = σ
]
, (20)
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which is zero since u′P(w − ϕ) − µρu
′
A(ϕ) = 0. Now subtracting expression (20) to

equation (19) gives

E
[(
w̃′(x)− ϕ′

(
w̃(x)

)
w̃′(x)

)
u′P

(
w̃(x)− ϕ

(
w̃(x)

)) ∣∣∣ σ̃ = σ
]

+

+ µρE
[
ϕ′
(
w̃(x)

)
w̃′(x)u′A

(
ϕ
(
w̃(x)

)) ∣∣∣ σ̃ = σ
]

= 0

or
∂

∂x
E
[
uP

(
w̃(x)− ϕ

(
w̃(x)

))
+ µρuA

(
ϕ
(
w̃(x)

)) ∣∣∣ σ̃ = σ
]

= 0.

This is the first-order condition of the social planner’s problem if he knows σ. Since

uP and uA are concave and w̃ is concave in x, the first order condition implies a global

maximum, viz. the incentive compatible x is a social optimum.

A.2 Application: Portfolio Choice

A.2.1 Computation of Optimal Investment

The problem stated in line (9) is to find the optimal investment x∗ given the optimal

sharing rule stated in equation (8), namely

ϕµ(w) = A+Bw,

where

A = −µaA + aP
1 + µ

and B =
1

1 + µ
. (21)

That is, x∗ must maximize the expectation

− 1

2
E

[(
Rf + x(R̃−Rf )− A−B

(
Rf + x(R̃−Rf )

)
− aP

)2
+ µ

((
A+B

(
Rf + x(R̃−Rf )

)
− aA

)2) ∣∣∣ σ̃ = σ

]
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over all x. Thus the first-order condition says that for optimum x∗

E

[
(1−B)(R̃−Rf )

(
Rf + x∗(R̃−Rf )− A−B

(
Rf + x∗(R̃−Rf )

)
− aP

)
+ µB(R̃−Rf )

(
A+B

(
Rf + x∗(R̃−Rf )

)
− aA

) ∣∣∣ σ̃ = σ

]
= 0,

thus

x∗ =

(
R̄−Rf

)
E
[
(R̃−Rf )2

∣∣ σ̃ = σ
] ((1−B)(A+ aP)− µB(A− aA)

(1−B)2 + b2µ
−Rf

)
.

Substituting in for A and B from equation (21) in the numerator gives

(1−B)(A+ aP)− µB(A− aA) =
µ (aA + aP)

1 + µ

and substituting in for A and B from equation (21) in the denominator gives

(1−B)2 +B2µ =
µ

1 + µ
.

Therefore

x =

(
R̄−Rf

)(
aP + aA −Rf

)
E
[(
R̃−Rf

)2 ∣∣ σ̃ = σ
]

=

(
R̄−Rf

)(
aP + aA −Rf

)
σ2 +

(
R̄−Rf

)2 .
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A.2.2 Computation of the Social Planner’s Weight

Immediately from plugging in the expressions for uA, ϕµρ , and x∗ into equation (11),

observe that

2|ū|
(
1 + µρ

)2
= E

(Rf +

(
R̄−Rf

)(
aP + aA −Rf

)
σ̃2 +

(
R̄−Rf

)2 (
R̃−Rf

)
− aP − aA

)2
∣∣∣∣∣∣ ρ̃ = ρ


=
(
aP + aA −Rf

)2 E
((R̄−Rf

)(
R̃−Rf

)
σ̃2 +

(
R̄−Rf

)2 − 1

)2
∣∣∣∣∣∣ ρ̃ = ρ


=
(
aP + aA −Rf

)2 {
1− 2E

[ (
R̄−Rf

)(
R̃−Rf

)
σ̃2 +

(
R̄−Rf

)2
∣∣∣∣∣ ρ̃ = ρ

]
+

+ E

((R̄−Rf

)(
R̃−Rf

)
σ̃2 +

(
R̄−Rf

)2
)2
∣∣∣∣∣∣ ρ̃ = ρ

 .

(22)

Applying the law of iterated expectations gives

1−
2|µ̄|

(
1 + µρ

)2(
aP + aA −Rf

)2
= 2E

[
E

[ (
R̄−Rf

)(
R̃−Rf

)
σ̃2 +

(
R̄−Rf

)2
∣∣∣∣∣ σ̃
] ∣∣∣∣∣ ρ̃ = ρ

]
− E

E
((R̄−Rf

)(
R̃−Rf

)
σ̃2 +

(
R̄−Rf

)2
)2
∣∣∣∣∣∣ σ̃
 ∣∣∣∣∣∣ ρ̃ = ρ


= 2E

 (R̄−Rf

)
E
[(
R̃−Rf

) ∣∣∣ σ̃]
σ̃2 +

(
R̄−Rf

)2
∣∣∣∣∣∣ ρ̃ = ρ

+ E


(
R̄−Rf

)2E [(R̃−Rf

)2 ∣∣∣ σ̃](
σ̃2 +

(
R̄−Rf

)2)2
∣∣∣∣∣∣∣ ρ̃ = ρ


and since

E
[(
R̃−Rf

)2 ∣∣∣ σ̃] = σ̃2 +
(
R̄−Rf

)2
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we have

1−
2|µ̄|

(
1 + µρ

)2(
aP + aA −Rf

)2
=
(
R̄−Rf

)2{E[ 2

σ̃2 +
(
R̄−Rf

)2
∣∣∣∣∣ ρ̃ = ρ

]
− E

[
1

σ̃2 +
(
R̄−Rf

)2
∣∣∣∣∣ ρ̃ = ρ

]}

= E

[ (
R̄−Rf

)2
σ̃2 +

(
R̄−Rf

)2
∣∣∣∣∣ ρ̃ = ρ

]
.

Finally, solve for (1 + µρ)
2 and cross multiply to recover equation (12).

A.2.3 Computation of Expected Utility Given ρ

Plug in to equation (13) and compute, maintaining at first the shorthand

w̃ := w̃
(
x∗(σ̃)

)
= Rf + x∗(σ̃)

(
R−Rf

)
,

that is:

E
[
uP

(
w̃
(
x∗(σ̃)

)
− ϕµρ

(
w̃
(
x∗(σ̃)

))) ∣∣∣ ρ̃ = ρ
]

= −1

2
E
[(
aP − w̃ + ϕµρ

(
w̃
))2 ∣∣∣∣ ρ̃ = ρ

]
= −1

2
E
[
aP − w̃ + aA +

w̃ − aP − aA
1 + µρ

∣∣∣∣ ρ̃ = ρ

]
= −1

2
E
[
aP − w̃ + aA +

w̃ − aP − aA
1 + µρ

∣∣∣∣ ρ̃ = ρ

]
= −1

2

(
µρ

1 + µρ

)2

E
[(
aP + aA − w̃

)2 ∣∣∣ ρ̃ = ρ
]

= −1

2

(
µρ

1 + µρ

)2

E
[(
aP + aA −Rf − x∗(σ̃)

(
R̃−Rf

))2 ∣∣∣∣ ρ̃ = ρ

]

= −1

2

(
µρ

1 + µρ

)2

E

(aP + aA −Rf −
(
aP + aA −Rf

)(R̄−Rf

)(
R̃−Rf

)
σ̃2 +

(
R̄−Rf

)2
)2
∣∣∣∣∣∣ ρ̃ = ρ


= −

(
aP + aA −Rf

)2
2

(
µρ

1 + µρ

)2

E

(1−
(
R̄−Rf

)(
R̃−Rf

)
σ̃2 +

(
R̄−Rf

)2
)2
∣∣∣∣∣∣ ρ̃ = ρ

.
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Now, from equation (22) above,

E

(1−
(
R̄−Rf

)(
R̃−Rf

)
σ̃2 +

(
R̄−Rf

)2
)2
∣∣∣∣∣∣ ρ̃ = ρ

 = 2|ū|
(

1 + µρ
aP + aA −Rf

)2

,

so, finally,

E
[
uP

(
w̃
(
x∗(σ̃)

)
− ϕ

(
w̃
(
x∗(σ̃)

)
, σ̃, ρ

)) ∣∣∣ ρ̃ = ρ
]

= ū µ2
ρ.
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